The cf Reference Manual
This is the cf Reference Manual, version 1.0,
generated automatically by Declt version 4.0 beta 2 "William Riker"
on Sun Dec 15 04:43:59 2024 GMT+0.
2 Systems
The main system appears first, followed by any subsystem dependency.
2.1 cf
Computations using continued fractions
- Author
Guillaume LE VAILLANT
- License
GPL-3
- Version
1.0
- Source
cf.asd
.
- Child Component
cf.lisp
(file).
3 Files
Files are sorted by type and then listed depth-first from the systems
components trees.
3.1 Lisp
3.1.1 cf/cf.asd
- Source
cf.asd
.
- Parent Component
cf
(system).
- ASDF Systems
cf
.
3.1.2 cf/cf.lisp
- Source
cf.asd
.
- Parent Component
cf
(system).
- Packages
cf
.
- Public Interface
-
- Internals
-
4 Packages
Packages are listed by definition order.
4.1 cf
- Source
cf.lisp
.
- Use List
common-lisp
.
- Public Interface
-
- Internals
-
5 Definitions
Definitions are sorted by export status, category, package, and then by
lexicographic order.
5.1 Public Interface
5.1.1 Special variables
- Special Variable: *cf-length* ¶
-
Maximum number of coefficients used in continued fractions.
- Package
cf
.
- Source
cf.lisp
.
- Special Variable: *cf-max-number-in-fractional-part* ¶
-
Maximum integer that can appear in the fractional part of a continued
fraction. The CF-SIMPLIFY function will truncate the continued fraction if it
encounters a number bigger than this maximum.
- Package
cf
.
- Source
cf.lisp
.
- Special Variable: +cf-atan-1/2+ ¶
-
Continued fraction for the arctangent of 1/2.
- Package
cf
.
- Source
cf.lisp
.
- Special Variable: +cf-e+ ¶
-
Continued fraction for e = exp(1). OEIS: A003417.
- Package
cf
.
- Source
cf.lisp
.
- Special Variable: +cf-gamma+ ¶
-
Continued fraction for the Euler-Mascheroni constant gamma. OEIS: A002852.
- Package
cf
.
- Source
cf.lisp
.
- Special Variable: +cf-ln-2+ ¶
-
Continued fraction for ln(2). OEIS: A016730.
- Package
cf
.
- Source
cf.lisp
.
- Special Variable: +cf-pi+ ¶
-
Continued fraction for pi. OEIS: A001203.
- Package
cf
.
- Source
cf.lisp
.
- Special Variable: +cf-pi/2+ ¶
-
Continued fraction for pi / 2. OEIS: A053300.
- Package
cf
.
- Source
cf.lisp
.
- Special Variable: +cf-tau+ ¶
-
Continued fraction for tau = 2 * pi. OEIS: A058291.
- Package
cf
.
- Source
cf.lisp
.
5.1.2 Ordinary functions
- Function: cf (x) ¶
-
Return the continued fraction for the number X (with at most
*CF-LENGTH* coefficients).
- Package
cf
.
- Source
cf.lisp
.
- Function: cf* (&rest fractions) ¶
-
Return the continued fraction of the product of its arguments.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf+ (&rest fractions) ¶
-
Return the continued fraction of the sum of its arguments.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf- (x &rest more-fractions) ¶
-
Return the continued fraction of the subtraction of the second and
subsequent arguments from X. If MORE-FRACTIONS are not specified,
return the continued fraction of -X.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-abs (x) ¶
-
Return the continued fraction of the absolute value of X.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-acos (x) ¶
-
Return the continued fraction of acos(X).
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-acosh (x) ¶
-
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-asin (x) ¶
-
Return the continued fraction of asin(X).
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-asinh (x) ¶
-
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-atan (y &optional x) ¶
-
If X is specified, return the continued fraction of atan(Y / X),
and atan(Y) otherwise.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-atanh (x) ¶
-
Return the continued fraction of atanh(X).
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-bihomographic (a b c d e f g h x y) ¶
-
Return the continued fraction of (AXY + BX + CY + D) / (EXY + FX + GY + H),
where A, B, C, D, E, F, G and H are relative integers, and X and Y are
continued fractions.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-ceiling (x &optional y) ¶
-
Return the continued fraction of the smallest integer greater than or
equal to X / Y, and the continued fraction of the remainder. The default value
for Y is 1.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-convergent (x) ¶
-
Return the convergent of the continued fraction X.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-cos (x) ¶
-
Return the continued fraction of cos(X).
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-cosh (x) ¶
-
Return the continued fraction of cosh(X).
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-decimal (x n) ¶
-
Return a string representing the decimal expansion of the continued
fraction X, with at most N digits in the fractional part.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-exp (x) ¶
-
Return the continued fraction of E^X.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-expt (x y) ¶
-
Return the continued fraction of X^Y.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-floor (x &optional y) ¶
-
Return the continued fraction of the greatest integer smaller than or equal
to X / Y, and the continued fraction of X modulo Y. The default value for
Y is 1.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-homographic (a b c d x) ¶
-
Return the continued fraction of (AX + B) / (CX + D),
where A, B, C and D are relative integers, and X is a continued fraction.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-log (x &optional y) ¶
-
If Y is specified, return the continued fraction of the base Y logarithm
of X, and ln(X) otherwise.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-max (x &rest more-fractions) ¶
-
Return the greatest of its arguments.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-min (x &rest more-fractions) ¶
-
Return the least of its arguments.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-minusp (x) ¶
-
Return T if X is strictly negative, and NIL otherwise.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-mod (x y) ¶
-
Return the continued fraction of X modulo Y (the second value of CF-FLOOR).
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-nsimplify (x) ¶
-
Like CF-SIMPLIFY, but modifying X instead of creating a new continued
fraction.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-plusp (x) ¶
-
Return T if X is strictly positive, and NIL otherwise.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-rem (x y) ¶
-
Return the continued fraction of the remainder of X / Y (the second value of
CF-TRUNCATE).
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-round (x &optional y) ¶
-
Return the continued fraction of X / Y rounded to the nearest integer,
and the continued fraction of the remainder. The default value for Y is 1.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-signum (x) ¶
-
Return the continued fraction of -1, 0 or 1 if X is respectively negative,
zero or positive.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-simplify (x) ¶
-
Keep at most *CF-LENGTH* coefficients of the continued fraction X and remove
huge numbers (greater than *cf-max-number-in-fractional-part*) from the
fractional part.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-sin (x) ¶
-
Return the continued fraction of cos(X).
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-sinh (x) ¶
-
Return the continued fraction of sinh(X).
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-sqrt (x) ¶
-
Return the continued fraction of the square root of X.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-tan (x) ¶
-
Return the continued fraction of tan(X).
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-tanh (x) ¶
-
Return the continued fraction of tanh(X).
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-truncate (x &optional y) ¶
-
Return the continued fraction of the integer part of X / Y rounded toward 0,
and the continued fraction of the remainder. The default value for Y is 1.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-zerop (x) ¶
-
Return T if X is zero, and NIL otherwise.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf/ (x &rest more-fractions) ¶
-
Return the continued fraction of the division of X by the second and
subsequent arguments. If MORE-FRACTIONS are not specified, return the continued
fraction of 1 / X.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf/= (x &rest more-fractions) ¶
-
Return NIL if at least two of its arguments are equal, and NIL otherwise.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf1+ (x) ¶
-
Return the continued fraction of X + 1.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf1- (x) ¶
-
Return the continued fraction of X - 1.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf< (x &rest more-fractions) ¶
-
Return if T its arguments are in strictly increasing order,
and NIL otherwise.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf<= (x &rest more-fractions) ¶
-
Return T if its arguments are in increasing order, and NIL otherwise.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf= (x &rest more-fractions) ¶
-
Return T if all its arguments are equal, and NIL otherwise.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf> (x &rest more-fractions) ¶
-
Return T if its arguments are in strictly decreasing order,
and NIL otherwise.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf>= (x &rest more-fractions) ¶
-
Return T if its arguments are in decreasing order, and NIL otherwise.
- Package
cf
.
- Source
cf.lisp
.
5.2 Internals
5.2.1 Special variables
- Special Variable: *cf-max-iterations* ¶
-
Maximum number of iterations used to compute some functions like EXP, LN,
COS, SIN...
- Package
cf
.
- Source
cf.lisp
.
5.2.2 Macros
- Macro: check-cf (x) ¶
-
Throw an error if X is not a valid continued fraction.
- Package
cf
.
- Source
cf.lisp
.
5.2.3 Ordinary functions
- Function: cf-atan1 (x) ¶
-
Return the continued fraction of atan(X).
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-expt-n (x n) ¶
-
Return the continued fraction of X^N, where N is a positive integer.
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-ln (x) ¶
-
Return the continued fraction of ln(X).
- Package
cf
.
- Source
cf.lisp
.
- Function: cf-sqrt-n (n) ¶
-
Return the continued fraction of the square root of N, where N is a positive
integer.
- Package
cf
.
- Source
cf.lisp
.
Appendix A Indexes
A.2 Functions
| |
|
C | | |
| cf : | | Public ordinary functions |
| cf* : | | Public ordinary functions |
| cf+ : | | Public ordinary functions |
| cf- : | | Public ordinary functions |
| cf-abs : | | Public ordinary functions |
| cf-acos : | | Public ordinary functions |
| cf-acosh : | | Public ordinary functions |
| cf-asin : | | Public ordinary functions |
| cf-asinh : | | Public ordinary functions |
| cf-atan : | | Public ordinary functions |
| cf-atan1 : | | Private ordinary functions |
| cf-atanh : | | Public ordinary functions |
| cf-bihomographic : | | Public ordinary functions |
| cf-ceiling : | | Public ordinary functions |
| cf-convergent : | | Public ordinary functions |
| cf-cos : | | Public ordinary functions |
| cf-cosh : | | Public ordinary functions |
| cf-decimal : | | Public ordinary functions |
| cf-exp : | | Public ordinary functions |
| cf-expt : | | Public ordinary functions |
| cf-expt-n : | | Private ordinary functions |
| cf-floor : | | Public ordinary functions |
| cf-homographic : | | Public ordinary functions |
| cf-ln : | | Private ordinary functions |
| cf-log : | | Public ordinary functions |
| cf-max : | | Public ordinary functions |
| cf-min : | | Public ordinary functions |
| cf-minusp : | | Public ordinary functions |
| cf-mod : | | Public ordinary functions |
| cf-nsimplify : | | Public ordinary functions |
| cf-plusp : | | Public ordinary functions |
| cf-rem : | | Public ordinary functions |
| cf-round : | | Public ordinary functions |
| cf-signum : | | Public ordinary functions |
| cf-simplify : | | Public ordinary functions |
| cf-sin : | | Public ordinary functions |
| cf-sinh : | | Public ordinary functions |
| cf-sqrt : | | Public ordinary functions |
| cf-sqrt-n : | | Private ordinary functions |
| cf-tan : | | Public ordinary functions |
| cf-tanh : | | Public ordinary functions |
| cf-truncate : | | Public ordinary functions |
| cf-zerop : | | Public ordinary functions |
| cf/ : | | Public ordinary functions |
| cf/= : | | Public ordinary functions |
| cf1+ : | | Public ordinary functions |
| cf1- : | | Public ordinary functions |
| cf< : | | Public ordinary functions |
| cf<= : | | Public ordinary functions |
| cf= : | | Public ordinary functions |
| cf> : | | Public ordinary functions |
| cf>= : | | Public ordinary functions |
| check-cf : | | Private macros |
|
F | | |
| Function, cf : | | Public ordinary functions |
| Function, cf* : | | Public ordinary functions |
| Function, cf+ : | | Public ordinary functions |
| Function, cf- : | | Public ordinary functions |
| Function, cf-abs : | | Public ordinary functions |
| Function, cf-acos : | | Public ordinary functions |
| Function, cf-acosh : | | Public ordinary functions |
| Function, cf-asin : | | Public ordinary functions |
| Function, cf-asinh : | | Public ordinary functions |
| Function, cf-atan : | | Public ordinary functions |
| Function, cf-atan1 : | | Private ordinary functions |
| Function, cf-atanh : | | Public ordinary functions |
| Function, cf-bihomographic : | | Public ordinary functions |
| Function, cf-ceiling : | | Public ordinary functions |
| Function, cf-convergent : | | Public ordinary functions |
| Function, cf-cos : | | Public ordinary functions |
| Function, cf-cosh : | | Public ordinary functions |
| Function, cf-decimal : | | Public ordinary functions |
| Function, cf-exp : | | Public ordinary functions |
| Function, cf-expt : | | Public ordinary functions |
| Function, cf-expt-n : | | Private ordinary functions |
| Function, cf-floor : | | Public ordinary functions |
| Function, cf-homographic : | | Public ordinary functions |
| Function, cf-ln : | | Private ordinary functions |
| Function, cf-log : | | Public ordinary functions |
| Function, cf-max : | | Public ordinary functions |
| Function, cf-min : | | Public ordinary functions |
| Function, cf-minusp : | | Public ordinary functions |
| Function, cf-mod : | | Public ordinary functions |
| Function, cf-nsimplify : | | Public ordinary functions |
| Function, cf-plusp : | | Public ordinary functions |
| Function, cf-rem : | | Public ordinary functions |
| Function, cf-round : | | Public ordinary functions |
| Function, cf-signum : | | Public ordinary functions |
| Function, cf-simplify : | | Public ordinary functions |
| Function, cf-sin : | | Public ordinary functions |
| Function, cf-sinh : | | Public ordinary functions |
| Function, cf-sqrt : | | Public ordinary functions |
| Function, cf-sqrt-n : | | Private ordinary functions |
| Function, cf-tan : | | Public ordinary functions |
| Function, cf-tanh : | | Public ordinary functions |
| Function, cf-truncate : | | Public ordinary functions |
| Function, cf-zerop : | | Public ordinary functions |
| Function, cf/ : | | Public ordinary functions |
| Function, cf/= : | | Public ordinary functions |
| Function, cf1+ : | | Public ordinary functions |
| Function, cf1- : | | Public ordinary functions |
| Function, cf< : | | Public ordinary functions |
| Function, cf<= : | | Public ordinary functions |
| Function, cf= : | | Public ordinary functions |
| Function, cf> : | | Public ordinary functions |
| Function, cf>= : | | Public ordinary functions |
|
M | | |
| Macro, check-cf : | | Private macros |
|
A.3 Variables
| |
|
* | | |
| *cf-length* : | | Public special variables |
| *cf-max-iterations* : | | Private special variables |
| *cf-max-number-in-fractional-part* : | | Public special variables |
|
+ | | |
| +cf-atan-1/2+ : | | Public special variables |
| +cf-e+ : | | Public special variables |
| +cf-gamma+ : | | Public special variables |
| +cf-ln-2+ : | | Public special variables |
| +cf-pi+ : | | Public special variables |
| +cf-pi/2+ : | | Public special variables |
| +cf-tau+ : | | Public special variables |
|
S | | |
| Special Variable, *cf-length* : | | Public special variables |
| Special Variable, *cf-max-iterations* : | | Private special variables |
| Special Variable, *cf-max-number-in-fractional-part* : | | Public special variables |
| Special Variable, +cf-atan-1/2+ : | | Public special variables |
| Special Variable, +cf-e+ : | | Public special variables |
| Special Variable, +cf-gamma+ : | | Public special variables |
| Special Variable, +cf-ln-2+ : | | Public special variables |
| Special Variable, +cf-pi+ : | | Public special variables |
| Special Variable, +cf-pi/2+ : | | Public special variables |
| Special Variable, +cf-tau+ : | | Public special variables |
|