This is the special-functions Reference Manual, version 1.2.0, generated automatically by Declt version 4.0 beta 2 "William Riker" on Sun Dec 15 07:45:53 2024 GMT+0.
The main system appears first, followed by any subsystem dependency.
special-functions
Special functions in Common Lisp
Mathematical Special Functions
Steve Nunez <steve@symbolics.tech>
(GIT https://github.com/Lisp-Stat/special-functions.git)
MS-PL
Mathematical Special Functions
1.2.0
num-utils
(system).
float-features
(system).
let-plus
(system).
alexandria+
(system).
pkgdcl.lisp
(file).
utils.lisp
(file).
erf.lisp
(file).
lanczos.lisp
(file).
gamma.lisp
(file).
log-gamma.lisp
(file).
factorial.lisp
(file).
Files are sorted by type and then listed depth-first from the systems components trees.
special-functions/special-functions.asd
special-functions/pkgdcl.lisp
special-functions/utils.lisp
special-functions/erf.lisp
special-functions/lanczos.lisp
special-functions/gamma.lisp
special-functions/log-gamma.lisp
special-functions/factorial.lisp
special-functions/special-functions.asd
special-functions
(system).
special-functions/utils.lisp
pkgdcl.lisp
(file).
special-functions
(system).
+square-root-2-pi+
(constant).
decode-float64
(function).
encode-float64
(function).
sin-pi
(function).
special-functions/erf.lisp
utils.lisp
(file).
special-functions
(system).
erf
(function).
erfc
(function).
inverse-erf
(function).
inverse-erfc
(function).
erfc-scaled
(function).
inverse-error
(function).
special-functions/lanczos.lisp
erf.lisp
(file).
special-functions
(system).
g
(special variable).
g-1/2
(special variable).
lanczos-sum
(function).
n
(special variable).
lanczos-13-denominator
(special variable).
lanczos-13-numerator
(special variable).
lanczos-13-numerator-scaled
(special variable).
special-functions/gamma.lisp
lanczos.lisp
(file).
special-functions
(system).
gamma
(function).
incomplete-gamma
(function).
lower-incomplete-gamma
(function).
regularised-gamma-prefix
(function).
upper-incomplete-gamma
(function).
gamma-aux
(function).
gamma-inverse-small
(function).
gamma-medium
(function).
gamma-p-derivative
(function).
log-maximum-double-value
(constant).
log-minimum-double-value
(constant).
maxgamd
(constant).
p-taylor
(function).
pq-asymptotic
(function).
q-fraction
(function).
q-gamma-half
(function).
q-gamma-integer
(function).
q-taylor
(function).
sign-gamma
(function).
stirling
(function).
special-functions/log-gamma.lisp
gamma.lisp
(file).
special-functions
(system).
log-gamma
(function).
special-functions/factorial.lisp
log-gamma.lisp
(file).
special-functions
(system).
factorial
(function).
factorial-table
(special variable).
ramanujan
(function).
sam-ramanujan
(function).
Packages are listed by definition order.
lanczos
common-lisp
.
g
(special variable).
g-1/2
(special variable).
lanczos-sum
(function).
n
(special variable).
lanczos-13-denominator
(special variable).
lanczos-13-numerator
(special variable).
lanczos-13-numerator-scaled
(special variable).
special-functions
spfn
specfun
alexandria+
.
common-lisp
.
let-plus
.
num-utils.arithmetic
.
num-utils.polynomial
.
erf
(function).
erfc
(function).
factorial
(function).
gamma
(function).
incomplete-gamma
(function).
inverse-erf
(function).
inverse-erfc
(function).
log-gamma
(function).
lower-incomplete-gamma
(function).
regularised-gamma-prefix
(function).
upper-incomplete-gamma
(function).
+square-root-2-pi+
(constant).
decode-float64
(function).
encode-float64
(function).
erfc-scaled
(function).
factorial-table
(special variable).
gamma-aux
(function).
gamma-inverse-small
(function).
gamma-medium
(function).
gamma-p-derivative
(function).
inverse-error
(function).
log-maximum-double-value
(constant).
log-minimum-double-value
(constant).
maxgamd
(constant).
p-taylor
(function).
pq-asymptotic
(function).
q-fraction
(function).
q-gamma-half
(function).
q-gamma-integer
(function).
q-taylor
(function).
ramanujan
(function).
sam-ramanujan
(function).
sign-gamma
(function).
sin-pi
(function).
stirling
(function).
Definitions are sorted by export status, category, package, and then by lexicographic order.
Returns the error function of n
Return the complementary error function erfc(x) = 1-erf(x)
Return the factorial value X! for X <= MAX-FACTORIAL; DOUBLE-FLOAT-POSITIVE-INFINITY if x < 0. X must be an INTEGER.
Return gamma(x), x <= +MAXGAMD+; NAN/RTE if x is a non-positive integer
Return the normalised incomplete gamma functions P and Q, a>=0, x>=0
P(a,x) = integral(exp(-t)*t^(a-1), t=0..x )/gamma(a)
Q(a,x) = integral(exp(-t)*t^(a-1), t=x..Inf)/gamma(a))
dax = x^a*exp(-x)/gamma(a) (prefix factor)
Returns three values:
P is the first value, Q the second, DAX the third, e.g. (values p q dax)
Return the inverse function of erf: (erf (inverse-erf x)) = x, -1 < x < 1
Return the inverse function of erfc: (erfc (inverse-erfc x)) = x, 0 < x < 2
Return the Lanczos sum for x, exp(g). If UNSCALED is non-nil, return the unscaled result
Return the logarithm of gamma(x)
Return the normalised lower incomplete gamma function P(a,x), a>=0, x>=0 P(a,x) = integral(exp(-t)*t^(a-1), t=0..x)/gamma(a)
Return x^a * exp(-x) / gamma(a)
This function accepts either RATIONAL or FLOAT values.
Return the normalised upper incomplete gamma function Q(a,x), a>=0, x>=0 Q(a,x) = integral(exp(-t)*t^(a-1), t=x..Inf)/gamma(a))
Maximum argument for gamma
Table of factorials for integer values up to 100
Convert the (unsigned-byte 64) bit representation into a native double-float
Returns the bit representation of the double-float X as an (unsigned-byte 64)
p/q := exp(x^2)*erfc(x), 1<=x<=128
Return 1/gamma(x) for |x| < 0.03125
Return gamma(x), |x| <= 13, x negative integer produces div by 0
Partial derivative with respect to x of the incomplete gamma function
Return value of inverse error function: erf_inv(p) if p <= 0.5, erfc_inv(q) otherwise
Temme/Gautschi code for P(a,x), dax = x^a*exp(-x)/gamma(a+1) Returns (values p q)
Incomplete gamma functions for large A and A near X
Continued fraction for Q(a,x)
Calculates normalised Q when a is a half-integer for a < min(30, x+1)
Return Q(a,x) when A is an integer, A < min(30,x+1)
Temme/Gautschi code for Q(a,x) when x < 1
Ramanujan’s original approximation of n!
Modification of Ramanujan’s approximation of n! by Sidney A. Morris
Return sign(gamma(x)), invalid for 0 or negative integer
Returns (sin (* pi x))
Return gamma(x) for x > 13
Jump to: | D E F G I L P Q R S U |
---|
Jump to: | D E F G I L P Q R S U |
---|
Jump to: | +
C F G L M N S |
---|
Jump to: | +
C F G L M N S |
---|
Jump to: | E F G L P S U |
---|
Jump to: | E F G L P S U |
---|