This is the trestrul Reference Manual, version 0.0.13, generated automatically by Declt version 4.0 beta 2 "William Riker" on Sun Sep 15 06:55:36 2024 GMT+0.
The main system appears first, followed by any subsystem dependency.
trestrul
Tiny utilities for TREe-STRUctured-List.
SATO Shinichi
(GIT git@github.com:hyotang666/trestrul)
Public Domain
# TRESTRUL 0.0.6
## What is this?
Tiny utilities for TREe-STRUctured-List.
## Current lisp world
List is very flexible.
It can be represented as tree too.
## Issues
Although CL lacks operators for tree structured list.
IMO: Reason of lackness may it is tough to get consensus about tree operations.
In lisp, list is constructed by CONS.
Consider removing 1 from ’(1 . 2).
Additionally, if it is tree, we can represents nested list as node.
If so ’(nil) contains one node? or two node?
## Proposal
TRESTRUL provides it.
## Usage
## From developer
### Product’s goal
merged by other utility libraries such as alexandria
### License
Public Domain
### Tested with
* SBCL/2.1.7
* CCL/1.12.1
* CLISP/2.49
* ECL/21.2.1
* Allegro/10.1
* CMUCL/21D
* ABCL/1.8.0
0.0.13
trestrul.lisp
(file).
Files are sorted by type and then listed depth-first from the systems components trees.
trestrul/trestrul.lisp
trestrul
(system).
ansubst
(function).
ansubst-if
(function).
asubst
(function).
asubst-if
(function).
collect-node
(function).
dotree
(macro).
find-leaf
(function).
find-leaf-if
(function).
find-node-if
(function).
follow
(function).
invalid-tree
(condition).
mapleaf
(function).
nmapleaf
(function).
path-to
(function).
proper-tree
(type).
proper-treep
(function).
remove-leaf
(function).
remove-leaf-if
(function).
traverse
(function).
tree
(type).
treep
(function).
function-designator
(type).
Packages are listed by definition order.
trestrul
common-lisp
.
ansubst
(function).
ansubst-if
(function).
asubst
(function).
asubst-if
(function).
collect-node
(function).
dotree
(macro).
find-leaf
(function).
find-leaf-if
(function).
find-node-if
(function).
follow
(function).
invalid-tree
(condition).
mapleaf
(function).
nmapleaf
(function).
path-to
(function).
proper-tree
(type).
proper-treep
(function).
remove-leaf
(function).
remove-leaf-if
(function).
traverse
(function).
tree
(type).
treep
(function).
function-designator
(type).
Definitions are sorted by export status, category, package, and then by lexicographic order.
# DOTREE
## Description:
iterate body with var bound by each leaf of TREE.
“‘lisp
#?(dotree (l ’(1 2 . 3))
(princ l))
:outputs "123"
“‘
### syntax
(DOTREE (var tree &optional return) &body body)
=> result
## Arguments and Values:
var := symbol which bound by each leaf. otherwise error.
“‘lisp
#?(dotree (0 ’(1 2 . 3))
(princ 0))
:signals error
“‘
tree := tree generate form. Not evaluated.
When the form does not generate tree structured list,
an error is signaled.
“‘lisp
#?(dotree (l ’tree)
(princ l))
:signals invalid-tree
, :ignore-signals
“‘
return := return form which evaluated only once after iteration.
“‘lisp
#?(dotree (l ’(1 2 . 3) :result)
(princ l))
=> :RESULT
, :stream
“‘
body := implicit progn
result := return value of RETURN. The default is nil.
“‘lisp
#?(dotree (l ’(1 2 . 3))
(1+ l))
=> NIL
“‘
## Affected By:
none
## Side-Effects:
none
## Notes:
can declare about VAR at top of BODY.
“‘lisp
#?(dotree (l ’(1 2 . 3))
(declare (type fixnum l))
(princ l))
:outputs "123"
“‘
VAR is able to see from RETURN form,
but VAR is bound NIL in such time.
“‘lisp
#?(dotree (l ’(1 2 . 3) (princ l))
(1+ l))
:outputs "NIL"
“‘
BLOCK named NIL is implicitly established.
So RETURN is able to be used.
“‘lisp
#?(dotree (l ’(1 2 3 4))
(if (= 3 l)
(return)
(princ l)))
:outputs "12"
“‘
When empty tree comes, only return form is evaluated.
“‘lisp
#?(dotree (l () :hoge)
(princ l))
=> :hoge
“‘
When CL:RETURN is called, RETURN form is not evaluated.
“‘lisp
#?(dotree (l ’(1 2 3 4) (princ l))
(if (= l 3)
(return)
(princ l)))
:outputs "12"
“‘
TAGBODY is implicitly established.
So GO is able to be used in body.
“‘lisp
#?(dotree (l ’(1 2 3 4))
(if (= 3 l)
(go 3)
(go :end))
3
(princ l)
:end
(princ l))
:outputs "12334"
“‘
## Exceptional-Situations:
# ASUBST, ANSUBST
## Description:
Substitute tree with applying substituter.
“‘lisp
#?(op #’princ-to-string 1 ’(1 2 3 1 2 3))
=> ("1" 2 3 "1" 2 3)
, :test
“‘
### syntax
(OP substituter target tree &key (test #’eql) (key #’identity))
=> result
## Arguments and Values:
substituter := function-designator which designates the function which accepts one argument.
If it is not function-designator, an error is signaled.
“‘lisp
#?(op :not-function-designator 1 ’(1 2 3))
:signals (or undefined-function
error ; for ccl
)
“‘
target := any lisp object.
tree := tree structured list, or leaf.
“‘lisp
#?(op #’princ-to-string :leaf :leaf)
=> "LEAF"
, :test
“‘
test := function designator which designates the function which accepts two arguments to test equality.
“‘lisp
#?(op #’parse-integer "0" ’("1" "2" "3" "0")
:test #’equal)
=> ("1" "2" "3" 0)
, :test
“‘
If it is not function designator, an error is signaled.
“‘lisp
#?(op #’identity 0 ’(1 2 3)
:test :not-function-designator)
:signals (or undefined-function
error ; for ccl
)
“‘
key := function designator which designates the function which accepts one argument.
“‘lisp
#?(op (constantly :zero) 0 ’("1" "2" "3" "0")
:key #’(lambda(x)
(if (stringp x)
(parse-integer x)
x)))
=> ("1" "2" "3" :ZERO)
, :test
“‘
result := see below.
## Affected By:
none
## Side-Effects:
none
## Notes:
## Exceptional-Situations:
# ASUBST
result := may newly consed substituted value.
“‘lisp
#?(let ((tree ’(:a :b :c)))
(eq tree (asubst (constantly :hoge)
:a
tree)))
=> NIL
“‘
# ANSUBST
result := may destructively modified substituted value.
“‘lisp
#?(let ((tree ’(:a :b :c)))
(eq tree (ansubst (constantly :hoge)
:a
tree)))
=> T
“‘
# ASUBST, ANSUBST
## Description:
Substitute tree with applying substituter.
“‘lisp
#?(op #’princ-to-string 1 ’(1 2 3 1 2 3))
=> ("1" 2 3 "1" 2 3)
, :test
“‘
### syntax
(OP substituter target tree &key (test #’eql) (key #’identity))
=> result
## Arguments and Values:
substituter := function-designator which designates the function which accepts one argument.
If it is not function-designator, an error is signaled.
“‘lisp
#?(op :not-function-designator 1 ’(1 2 3))
:signals (or undefined-function
error ; for ccl
)
“‘
target := any lisp object.
tree := tree structured list, or leaf.
“‘lisp
#?(op #’princ-to-string :leaf :leaf)
=> "LEAF"
, :test
“‘
test := function designator which designates the function which accepts two arguments to test equality.
“‘lisp
#?(op #’parse-integer "0" ’("1" "2" "3" "0")
:test #’equal)
=> ("1" "2" "3" 0)
, :test
“‘
If it is not function designator, an error is signaled.
.
“‘lisp
#?(op #’identity 0 ’(1 2 3)
:test :not-function-designator)
:signals (or undefined-function
error ; for ccl
)
“‘
key := function designator which designates the function which accepts one argument.
“‘lisp
#?(op (constantly :zero) 0 ’("1" "2" "3" "0")
:key #’(lambda(x)
(if (stringp x)
(parse-integer x)
x)))
=> ("1" "2" "3" :ZERO)
, :test
“‘
result := see below.
## Affected By:
none
## Side-Effects:
none
## Notes:
## Exceptional-Situations:
# ASUBST
result := may newly consed substituted value.
“‘lisp
#?(let ((tree ’(:a :b :c)))
(eq tree (asubst (constantly :hoge)
:a
tree)))
=> NIL
“‘
# ANSUBST
result := may destructively modified substituted value.
“‘lisp
#?(let ((tree ’(:a :b :c)))
(eq tree (ansubst (constantly :hoge)
:a
tree)))
=> T
“‘
# ASUBST-IF
## Description:
substitute leaf which satisfies PREDICATE.
“‘lisp
#?(asubst-if #’princ-to-string
(lambda(x)
(unless (listp x)
(evenp x)))
’(1 2 3 4 5))
=> (1 "2" 3 "4" 5)
, :test
“‘
### syntax
(ASUBST-IF substituter predicate tree &key (key #’identity))
=> result
## Arguments and Values:
substituter := function designator which designates the function which accepts one argument.
if it is not function designator, an error is signaled.
“‘lisp
#?(asubst-if :not-function-designator
(lambda(x)
(unless(listp x)
(numberp x)))
’(1 2 3 4 5))
:signals (or undefined-function
error ; for ccl
)
“‘
predicate := function designator which desigates the function which accepts one argument.
if it is not funciton designator, an error is signaled.
“‘lisp
#?(asubst-if #’identity :not-function-designator ’(1 2 3))
:signals (or undefined-function
error ; for ccl
)
“‘
tree := leaf or tree structured list.
“‘lisp
#?(asubst-if #’symbol-name #’symbolp :hoge)
=> "HOGE"
, :test
“‘
key := function designator which designates the function which accepts one argument.
if it is not function designator, an error is signaled.
“‘lisp
#?(asubst-if ’string (complement #’symbol-package)
’(hoge :hoge #:hoge "HOGE")
:key #’(lambda(x)
(and (symbolp x)
x)))
=> (hoge :hoge "HOGE" "HOGE")
, :test
“‘
“‘lisp
#?(asubst-if #’string #’null ’(hoge :hoge #:hoge nil)
:key :not-function-designator)
:signals undefined-function
“‘
result := substituted leaf or tree.
## Affected By:
none
## Side-Effects:
none
## Notes:
Top level node (i.e. root) is also tested.
“‘lisp
#?(asubst-if (constantly :hoge) #’listp ’(:a :b :c))
=> :hoge
“‘
## Exceptional-Situations:
# COLLECT-NODE
## Description:
collect node from TREE.
“‘lisp
#?(collect-node :export ‘(defpackage :hoge (:use :cl)
(:export :a :b :c)
(:export :d :e :f))
:key #’car)
=> ((:export :a :b :c) (:export :d :e :f))
, :test
“‘
### syntax
(COLLECT-NODE target tree &key (key #’identity) (test #’eql) recursive-p)
=> result
## Arguments and Values:
target := T
tree := tree structured list. Otherwise error.
“‘lisp
#?(collect-node :hoge :not-tree)
:signals invalid-tree
“‘
key := function designator which designates the function which accepts one node as argument.
The default is CL:IDENTITY.
If it is not function designator, an error is signaled.
“‘lisp
#?(collect-node :use ’((:use :cl) (:export :a :b :c))
:key :not-function-designator)
:signals undefined-function
“‘
test := function designator which designates the function which accepts two arguments.
The default is CL:EQL.
if it is not function-designator, an error is signaled.
“‘lisp
#?(collect-node ’(:use :cl) ’((:use :cl) (:export :a :b :c))
:test :not-function-designator)
:signals undefined-function
“‘
recursive-p := boolean which control whether call collect-node recursively or not.
“‘lisp
#?(collect-node :tag ’((:tag recursively (:tag)))
:key #’car)
=> ((:tag recursively (:tag)))
, :test
“‘
“‘lisp
#?(collect-node :tag ’((:tag recursively (:tag second)))
:key #’car
:recursive-p T)
=> ((:tag recursively (:tag second))
(:tag second))
, :test
“‘
result := list which may contains node.
## Affected By:
none
## Side-Effects:
none
## Notes:
When both :key and :test are not specified,
return form is always nil unless target is nil.
“‘lisp
#?(collect-node :tag ’((:tag 1 (:tag 2))))
=> NIL
“‘
“‘lisp
#?(collect-node nil ’((:tag 1 () (:tag 2 ()))))
=> (NIL NIL NIL NIL NIL)
“‘
#### i.e. ((:tag 1 NIL (:tag 2 NIL . NIL) . NIL) . NIL)
Works fine even if :recirsive-p T is specified (i.e. never infinite loop).
“‘lisp
#?(collect-node nil ’((:tag 1 NIL(:tag 2 NIL)))
:recursive-p T)
=> (NIL NIL NIL NIL NIL)
, :test
“‘
“‘lisp
#?(collect-node nil ’())
=> (NIL)
“‘
remember tree is one kind of node.
“‘lisp
#?(collect-node nil ’() :recursive-p t)
=> (NIL)
, :test
“‘
“‘lisp
#?(collect-node nil ’(NIL))
=> (NIL NIL)
“‘
remember (NIL) is (NIL . NIL)
“‘lisp
#?(collect-node nil ’(NIL) :recursive-p t)
=> (NIL NIL)
, :test
“‘
## Exceptional-Situations:
# FIND-LEAF
## Description:
Find target from tree.
### syntax
(FIND-LEAF target tree &key (test #’eql) (key #’identity))
=> result
“‘lisp
#?(find-leaf 0 ’(1 (2 . 3) ((0))))
=> 0
“‘
## Arguments and Values:
target := T
tree := Tree, otherwise error.
“‘lisp
#?(find-leaf 0 0)
:signals error
“‘
test := Function as ‘(FUNCTION(T T)BOOLEAN)‘, the default is #’EQL.
key := Function as ‘(FUNCTION(T)T)‘, the default is #’IDENTITY.
result := T
## Affected By:
none
## Side-Effects:
none
## Notes:
Same as ‘CL:FIND‘, ‘FIND-LEAF‘ can not find ‘NIL‘.
“‘lisp
#?(find-leaf nil ’(()))
=> NIL
“‘
## Exceptional-Situations:
# FIND-LEAF-IF
## Description:
Find element which satisfies PRED from TREE.
### syntax
(FIND-LEAF-IF pred tree &key (key #’identity))
=> result
“‘lisp
#?(find-leaf-if #’oddp ’(2 (3 . 4) 5))
=> 3
“‘
## Arguments and Values:
pred := function designator as (function(T)T).
“‘lisp
#?(find-leaf-if ’oddp ’(1 2 3))
=> 1
“‘
otherwise error
“‘lisp
#?(find-leaf-if "NOT-FUNCTION" ’(1 2 3))
:signals error
“‘
tree := tree structured list.
atom is not acceptable.
“‘lisp
#?(find-leaf-if #’oddp 1)
:signals error
“‘
key := function designator as (function(T)T).
“‘lisp
#?(find-leaf-if #’oddp ’("1" "2" "3") :key #’parse-integer)
=> "1"
, :test
“‘
“‘lisp
#?(find-leaf-if #’oddp ’("1" "2" "3") :key ’parse-integer)
=> "1"
, :test
“‘
otherwise error.
“‘lisp
#?(find-leaf-if #’oddp ’("1" "2" "3") :key "NOT-FUNCTION")
:signals error
“‘
result := T
## Affected By:
none
## Side-Effects:
none
## Notes:
## Exceptional-Situations:
# FIND-NODE-IF
## Description:
Find node which satisfies ‘PRED‘ from ‘TREE‘.
### syntax
(FIND-NODE-IF pred tree &key (count 1) recursive-p)
=> result
## Arguments and Values:
pred := Function designator as (function (list) boolean), otherwise error.
“‘lisp
#?(find-node-if "not function designator" ’(:dummy))
:signals error
“‘
tree := Tree, which include atom.
“‘lisp
#?(find-node-if #’identity "atom")
=> NIL
“‘
count := (integer 1 *), otherwise error.
“‘lisp
#?(find-node-if #’identity nil :count "not (integer 1 *)")
:signals error
“‘
‘COUNT‘ specify Nth value. The default is 1.
“‘lisp
#?(find-node-if (lambda(x) (typep x ’(cons (eql :a) *)))
’((:a 1) (:a 2) (:a 3)))
=> (:a 1)
, :test
“‘
“‘lisp
#?(find-node-if (lambda(x) (typep x ’(cons (eql :a) *)))
’((:a 1) (:a 2) (:a 3))
:count 2)
=> (:A 2)
, :test
“‘
“‘lisp
#?(find-node-if (lambda(x) (typep x ’(cons (eql :a) *)))
’((:a 1) (:a 2) (:a 3))
:count 3)
=> (:A 3)
, :test
“‘
“‘lisp
#?(find-node-if (lambda(x) (typep x ’(cons (eql :a) *)))
’((:a 1) (:a 2) (:a 3))
:count 4)
=> NIL
“‘
recursive-p := Generalized boolean. The default is ‘NIL‘.
“‘lisp
#?(find-node-if (lambda(x) (eq :a (car x)))
’((:a 1 :a 2 :a 3) (:a 4))
:count 2)
=> (:A 4)
, :test
“‘
“‘lisp
#?(find-node-if (lambda(x) (eq :a (car x)))
’((:a 1 :a 2 :a 3) (:a 4))
:count 2
:recursive-p t)
=> (:A 2 :A 3)
, :test
“‘
result := T
## Affected By:
none
## Side-Effects:
none
## Notes:
## Exceptional-Situations:
# FOLLOW
## Description:
### syntax
(FOLLOW path tree)
=> result
“‘lisp
#?(let ((tree ’(1 (2 . 3) ((((4) . 5))))))
(follow (path-to 5 tree)
tree))
=> 5
“‘
## Arguments and Values:
path := ((function(list)T)*)
Expects return value of ‘PATH-TO‘.
When null, TREE is returned.
“‘lisp
#?(follow nil :a)
=> :A
“‘
“‘lisp
#?(follow nil ’(:a . :b))
=> (:A . :B)
, :test
“‘
tree := Tree structured list, include atom. i.e. T.
“‘lisp
#?(follow (list #’car) ’(:a . :b))
=> :A
“‘
result := T
## Affected By:
## Side-Effects:
## Notes:
## Exceptional-Situations:
# MAPLEAF, NMAPLEAF
### syntax
(OP fun tree)
=> result
## Description:
Apply FUN to every leaf of TREE.
“‘lisp
#?(op #’1+ ’(1 (2 . 3) . 4))
=> (2 (3 . 4) . 5)
, :test
“‘
## Arguments and Values:
fun := function which accepts one argument. Otherwise error.
“‘lisp
#?(op 0 ’(1 2 3 4))
:signals error
, :lazy
“‘
tree := tree structured list. Otherwise error.
“‘lisp
#?(op #’1+ 1)
:signals error
, :lazy
“‘
result := see below.
## Affected By:
none
## Side-Effects:
none
## Notes:
## Exceptional-Situations:
# MAPLEAF
result := newly consed tree structured list.
“‘lisp
#?(let ((tree ’(1 . 2)))
(eq tree (mapleaf #’identity tree)))
=> NIL
“‘
# NMAPLEAF
## Side-Effects:
argument TREE is destructively modified.
“‘lisp
#?(let ((tree ’(1 2 3)))
(eq tree (nmapleaf #’1+ tree)))
=> T
“‘
# MAPLEAF, NMAPLEAF
### syntax
(OP fun tree)
=> result
## Description:
Apply FUN to every leaf of TREE.
“‘lisp
#?(op #’1+ ’(1 (2 . 3) . 4))
=> (2 (3 . 4) . 5)
, :test
“‘
## Arguments and Values:
fun := function which accepts one argument. Otherwise error.
“‘lisp
#?(op 0 ’(1 2 3 4))
:signals error
, :lazy
“‘
tree := tree structured list. Otherwise error.
“‘lisp
#?(op #’1+ 1)
:signals error
, :lazy
“‘
result := see below.
## Affected By:
none
## Side-Effects:
none
## Notes:
## Exceptional-Situations:
# MAPLEAF
result := newly consed tree structured list.
“‘lisp
#?(let ((tree ’(1 . 2)))
(eq tree (mapleaf #’identity tree)))
=> NIL
“‘
# NMAPLEAF
## Side-Effects:
argument TREE is destructively modified.
“‘lisp
#?(let ((tree ’(1 2 3)))
(eq tree (nmapleaf #’1+ tree)))
=> T
“‘
# PATH-TO
## Description:
Return list of function-names, which guide you to target item in the tree.
Secondary value is foundp.
“‘lisp
#?(path-to 1 1)
:values (NIL T)
“‘
“‘lisp
#?(path-to 1 ’(1))
:values ((CAR) T)
“‘
“‘lisp
#?(path-to 1 ’(2))
:values (NIL NIL)
“‘
“‘lisp
#?(path-to 2 ’(1 . 2))
:values ((CDR) T)
“‘
### syntax
(PATH-TO item tree &key (test #’eql))
=> result
## Arguments and Values:
item := T
tree := Tree structured list, include atom. i.e. T.
test := (function(t t)generalized-boolean).
result := (values (function*) boolean)
## Affected By:
none
## Side-Effects:
none
## Notes:
## Exceptional-Situations:
# PROPER-TREEP
## Description:
Tests arg is proper-tree.
“‘lisp
#?(proper-treep :leaf)
=> NIL
“‘
“‘lisp
#?(proper-treep ())
=> T
“‘
“‘lisp
#?(proper-treep ’(:a :b))
=> T
“‘
“‘lisp
#?(proper-treep ’(:a . :b))
=> NIL
“‘
### syntax
(PROPER-TREEP arg)
=> result
## Arguments and Values:
arg := any lisp object
result := boolean
## Affected By:
none
## Side-Effects:
none
## Notes:
## Exceptional-Situations:
# REMOVE-LEAF
## Description:
remove specified LEAF from TREE.
“‘lisp
#?(remove-leaf 4 ’(1 2 3 (4)))
=> (1 2 3 ())
, :test
“‘
### syntax
(REMOVE-LEAF item tree &key (test #’eql) (key #’identity) (keep t))
=> result
## Arguments and Values:
item := non NIL atom, otherwise unspecified.
“‘lisp
#?(remove-leaf () ’(() 1 2))
=> unspecified
“‘
tree := tree structured list, otherwise error.
“‘lisp
#?(remove-leaf 1 1)
:signals invalid-tree
“‘
test := function-designator which designate the function which accepts two arguments.
Otherwise error.
The default is CL:EQL.
“‘lisp
#?(remove-leaf (princ-to-string 1) (list "2" "1" "0"))
=> ("2" "1" "0")
, :test
“‘
“‘lisp
#?(remove-leaf "1" ’("2" "1" "0") :test ’string=)
=> ("2" "0")
, :test
“‘
“‘lisp
#?(remove-leaf "1" ’("2" "1" "0") :test :not-function-designator)
:signals undefined-function
“‘
key := function-designator which designates the function which accepts one argument.
Otherwise error.
The default is CL:IDENTITY.
“‘lisp
#?(remove-leaf 1 ’("2" "1" "0"))
=> ("2" "1" "0")
, :test
“‘
“‘lisp
#?(remove-leaf 1 ’("2" "1" "0") :key #’parse-integer)
=> ("2" "0")
, :test
“‘
“‘lisp
#?(remove-leaf "1" ’("2" "1" "0") :key :not-function-designator)
:signals undefined-function
“‘
keep := boolean
control flag, whether keep empty node (i.e. NIL) or not.
The default it T.
“‘lisp
#?(remove-leaf 1 ’(1 2 (1) 2))
=> (2 () 2)
, :test
“‘
“‘lisp
#?(remove-leaf 1 ’(1 2 (1) 2) :keep nil)
=> (2 2)
, :test
“‘
result := newly consed tree structured list.
“‘lisp
#?(let ((tree ’(1 2 3 4 5)))
(eq tree (remove-leaf 0 tree)))
=> NIL
“‘
## Affected By:
none
## Side-Effects:
none
## Notes:
TREE must be proper tree. See PROPER-TREE for detail.
## Exceptional-Situations:
# REMOVE-LEAF-IF
## Description:
Remove leaf which satisfies FUNCTION.
“‘lisp
#?(remove-leaf-if #’evenp ’(1 (2 3) 4))
=> (1 (3))
, :test
“‘
### syntax
(REMOVE-LEAF-IF function tree &key (key #’identity) (keep t))
=> result
## Arguments and Values:
function := function-designator which designates the function which accepts one argument.
Otherwise error.
“‘lisp
#?(remove-leaf-if ’oddp ’(1 (2 3) 4))
=> ((2)4)
, :test
“‘
“‘lisp
#?(remove-leaf-if :not-function-designator ’(1 (2 3) 4))
:signals undefined-function
“‘
tree := tree structured list, otherwise error.
“‘lisp
#?(remove-leaf-if #’evenp 0)
:signals (or invalid-tree
type-error ; for sbcl
warning ; for ccl
)
“‘
key := function-desinator which designates the function which accepts one argument.
“‘lisp
#?(remove-if #’evenp ’("1" "2" "3"))
:signals type-error
“‘
“‘lisp
#?(remove-if #’evenp ’("1" "2" "3") :key #’parse-integer)
=> ("1" "3")
, :test
“‘
keep := boolean which control whether keep empty node or not.
The default is T.
“‘lisp
#?(remove-leaf-if #’evenp ’(1 (2) 3))
=> (1 () 3)
, :test
“‘
“‘lisp
#?(remove-leaf-if #’evenp ’(1 (2) 3) :keep nil)
=> (1 3)
, :test
“‘
result := newly consed tree structured list.
“‘lisp
#?(let ((tree ’(1 2 3)))
(eq tree (remove-leaf-if #’evenp tree)))
=> NIL
“‘
## Affected By:
none
## Side-Effects:
none
## Notes:
## Exceptional-Situations:
# TRAVERSE
## Description:
Traverse TREE with doing FUNCTION.
This is ‘MAPC‘ like operator.
### syntax
(TRAVERSE function tree)
=> result
“‘lisp
#?(traverse #’print ’(1 (2 . 3) 4))
:outputs "
(1 (2 . 3) 4)
1
((2 . 3) 4)
(2 . 3)
2
3
(4)
4
NIL "
“‘
## Arguments and Values:
function := Function as (FUNCTION(T)T).
Otherwise error.
“‘lisp
#?(traverse "NOT-FUNCTION" ’(1 2 3))
:signals error
“‘
This function’s return value is discarded.
tree := Tree structured list.
Atom is acceptable.
“‘lisp
#?(traverse #’print :atom)
:outputs "
:ATOM "
“‘
result := NIL
“‘lisp
#?(traverse #’print :atom)
=> NIL
, :stream
“‘
## Affected By:
none
## Side-Effects:
none
## Notes:
‘TRAVERSE‘ dinamically construct ‘CATCH‘ tag named ‘TRAVERSE‘.
You can use it to skip traversing.
“‘lisp
#?(traverse (lambda(x)
(if (and (listp x)
(eql 2 (car x)))
(throw ’traverse nil)
(print x)))
’(1 (2 . 3) 4))
:outputs "
(1 (2 . 3) 4)
1
((2 . 3) 4)
(4)
4
NIL "
“‘
## Exceptional-Situations:
# TREEP
## Description:
Tests arg is tree.
“‘lisp
#?(treep :leaf)
=> NIL
“‘
“‘lisp
#?(treep ())
=> T
“‘
“‘lisp
#?(treep ’(:a :b))
=> T
“‘
“‘lisp
#?(treep ’(:a . :b))
=> T
“‘
### syntax
(TREEP arg)
=> result
## Arguments and Values:
arg := any lisp object.
result := boolean
## Affected By:
none
## Side-Effects:
none
## Notes:
## Exceptional-Situations:
# INVALID-TREE
## Description:
## Class Precedence List: (case in SBCL)
invalid-tree simple-type-error simple-condition type-error error serious-condition condition slot-object t
## Effective Slots:
FORMAT-CONTROL [Type] T
[READER] simple-condition-format-control
FORMAT-ARGUMENTS [Type] T
[READER] simple-condition-format-arguments
DATUM [Type] T
[READER] type-error-datum
EXPECTED-TYPE [Type] T
[READER] type-error-expected-type
## Notes:
simple-type-error
.
# PROPER-TREE
## Description:
Tree structured list but without dotted pair.
“‘lisp
#?(typep () ’proper-tree)
=> T
“‘
“‘lisp
#?(typep ’(:a . :b) ’proper-tree)
=> NIL
“‘
“‘lisp
#?(typep ’(:a :b) ’proper-tree)
=> T
“‘
“‘lisp
#?(typep :atom ’proper-tree)
=> NIL
“‘
“‘lisp
#?(typep ’((:a :b)) ’proper-tree)
=> T
“‘
“‘lisp
#?(typep ’((:a . :b) :c) ’proper-tree)
=> NIL
“‘
## Compound Type Specifier Kind:
none
## Compound Type Specifier Syntax:
## Compound Type Specifier Arguments:
## Compound Type Specifier Description:
# TREE
## Description:
Tree structured list which includes NIL and dotted pair.
“‘lisp
#?(typep nil ’tree)
=> T
“‘
“‘lisp
#?(typep ’(:a . :b) ’tree)
=> T
“‘
“‘lisp
#?(typep :atom ’tree)
=> NIL
“‘
## Compound Type Specifier Kind:
none
## Compound Type Specifier Syntax:
## Compound Type Specifier Arguments:
## Compound Type Specifier Description:
Jump to: | A C D F M N P R T |
---|
Jump to: | A C D F M N P R T |
---|
Jump to: | C F I P S T |
---|
Jump to: | C F I P S T |
---|